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Vibrational Energy Exchange in Quantum and Classical Mechanics
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The probability of vibrational energy exchange in a molecular collision can be calculated using (1)
a wave-mechanical treatment using the method of “distorted waves,” (2) a semiclassical time-dependent
perturbation procedure in which the perturbation energy is obtained as a function of time from the classical
collision trajectory, and (3) a purely classical calculation of the encrgy transferred to a classical vibrator.

These methods are reviewed, related, and compared.

I. INTRODUCTION

N a previous paper,! it was shown that a small

perturbation calculation using purely classical me-
chanics gave the same result for the average vibrational
energy transferred in a molecular collision as the wave-
mechanical small perturbation result, when certain
approximations were made. This presentation did not
make clear how the various approximations entered
into the wave-mechanical treatment and an adequate
discussion of the relationships between the classical
method, the time-independent wave-mechanical meth-
od, and the time-dependent wave-mechanical method
was not given. The purpose of this paper is to enlarge
upon these aspects of the problem for the case of a
small perturbation and small transition probabilities.

Landau and Teller? first performed the calculation
using the classical method. Unfortunately, they wrote
the symbol » to mean what we now generally write as
w=2nv, and this led to some misunderstanding® in
making comparisons with the quantum theory*® as
has been pointed out previously.””® When wave me-
chanics was first discovered, there was a tendency to
completely discard classical mechanics in the rush to
apply the new mechanics to as wide a range of problems
as possible. It is understandable then that Landau
and Teller chided previous workers who used methods
of great sophistication and rigor which were not neces-
sary in this problem.

The requirements that must be met in a molecular
collision involving a transition from one state to

1D. Rapp, J. Chem. Phys. 32, 735 (1960).

2 1,. Landau and E. Teller, Physik Z. Sowjetunion 10, 34 (19306).

3In Refs. 4 and 5, Herzfeld identifies L of the classical theory
with 27L of the wave-mechanical theory because of this mis-
understanding.

4+ K. F. Herzfeld, “Relaxation Phenomena in Gases,” in Ther-
modynamics and Physics of Matter, edited by F. Rossini (Princeton
University Press, Princeton, New Jersey, 1955).

s K. I. Herzfeld and T. A. Litovitz, Absorption and Dispersion
of Ultrasonic Waves (Academic Press Inc., New York, 1959).
( ‘T.) L. Cottrell and N. Ream, Trans. Faraday Soc. 51, 1453

1955).

7D. Rapp, M. S. thesis, Princeton University, 1956.

8R. C. Amme and S. Legvold, J. Chem. Phys. 30, 163 (1959).
( ' B7.)Stcvcns and M. Boudart, Ann. N.Y. Acad. Sci. 67, 570,

1957).

another, in order for classical mechanics to be a good
approximation for some or all of the motions, are
difficult to define. One usually relies on the general
statement that when the de Broglie wavelength is
“small” compared to the distance over which the poten-
tial varies significantly, classical mechanics should be
a good approximation. However, a more precise formu-
lation based on a WKB treatment gives the requirement

(d/dx) (\/2m)K<1.

The factor 27 in this expression is important and
should not be overlooked. As we shall see presently,
when the potential varies with a coordinate as ek,
one finds that if terms like exp(—4x2L/\) are small
compared to unity, the quantum result reduces to the
classical result. We therefore gain a more precise
meaning for the word “small.” If 4x*L/A=<3, one only
incurs errors of the order of 3% by using the classical
method.

II. WAVE-MECHANICAL PROBLEM

We deal with a linear arrangement of three atoms
(Fig. 1). Initially, A and the diatomic molecule B-C
are separated by an infinite distance and have relative
velocity v;. If the positions of A, B, and C are specified
by the respective distances £, &8, and & from some
origin on the line passing through A, B, and C, the
Schrédinger equation has the form

1 o 1 T 1 0%
"—(— = - ,)+V\I’=E\I'. (1)
2 Ma aEA" ma aEB' mc OE(:‘
An orthogonal transformation can then be made to
coordinates #ity, uly, and MR, where
fiv=[ma(mp~+mc) ]/ (ma+mp+mc),
u=mpmec/ (ms+mc),
M =ma-+mp+mc,
x=[(mpés+mckc) / (mutmc) ]—a,

y=£C—'£B,

and
R= (mata+msts+mcic) /M.
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I16. 1. Collision coordinates.

The coordinates x, v, and R refer to motion of A,
relative to the center of mass of BC, relative motion
of B with respect to C, and motion of the center of
mass of A+4B-+C. The Schrédinger equation then
transforms to

w1 0w
3

1 oW 19V

MOR: i 02 p 0y

)+ W=Ev.  (2)

The potential energy V7 is independent of the center
of mass of A4-B+C, so V=1 (x, y) is independent of
R. If we then write E= Ep+ Ep, and W =V7(R)V;(x, y),
where 7 refers to translational motion of the center of
mass of A+B+C, and 7 refers to internal relative
motion, we obtain

Wy expli(2M Er)iR/k]
and

(1 ™ 10%7\
- (ﬁ it ()y2)+1 (x,9)¥r=Elr.  (3)
Equation (3) is perfectly general for any three-body
linear collision. The application to vibrational energy
transfer obtains when a particular choice of the form
of W7 and V(x, y) is made.

The function V(x, y) is of the form V®BO (y)4 "’
(x, ¥) in which V®©(y) is the binding potential of the
diatomic molecule B-C (in our case approximately a
harmonic oscillator) and V’(x, y) is the interaction of
A with B-C. As x— e, V’(x, )—0. As a result, ¥; has
the asymptotic form for large x

Vi~ W, W ()W, B0 (y), 4
where ¥, BC(y) is a solution of the equation
[— (7*/2u) (d*/dy®) +V ®BO (y) —e, J¥.BO) () =0, (5)

and ¥ (x) become plane waves as x— . In particu-
lar, for a unit flux of A incident on B-C in the initial
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state 7, the asymptotic form is
W) (x)~ exp(—ikix) +a; exp(ikix),

(n##i), (6)

and the probability of transition to the state n is
| an IQ k,,/k,'.

Following Jackson and Mott,' we next assume that
asymptotic Eq. (4) can be used for all x, with the
¥, B0 (y) still solutions of Eq. (5), but the ¥ (x) are
not plane waves when V’(x, y) is appreciable. We see
that the appropriate ¥ (x) to pick are the “distorted”
wavefunctions corresponding to elastic scattering from
V'(x, ). If we insert Eq. (4) into Eq. (3) and use
Eq. (5) to simplify, we obtain

_B & we (A) (). (BO) () = 7
[ Wmde 2 V'(x, )’)]‘Pn (2)¥,BO (y) =0, (7)
where #%k,2/2m= E—e,. We then multiply Eq. (7) by
;B0 (y) and integrate over all y, to obtain

— (7/2m) [(d*/da®) + k7 J¥;® (x)
+2an’(x)‘1’u(A)(x) =0) (8)

W, A (1) ~a, exp(iknx)

in which we have used the orthogonality of the ¥(BC) (y),
and

+w
Vin' (%) = / ;B0 (y) V' (x, y)¥a®O (y)dy.  (9)
If the probability of a change of state of B-C is small,
we can take a; 1. Then, to zero order,
VW (x) =0 ¥, A (x)=0, (n7%1).
To first order,
W, A (1) =f,O4f,0
W, (x) =f,® (n5#1). (10)

We must next establish the order of the integrals.
We use the potential function previously described!

V'(x,y) =V (x) {1+[mc/(mp+mc)J(Y/L)}, (11)

where ¥=y—1y,, and 3, is the equilibrium rest value
of y. We therefore find

Vi (x) =V (%),
Vi (x) =V (x) lmc/(mp+mc) J(Yiu/L),

where

(12)
(j=n) (13)

Vo= [ ¥, (1) re,®0(¥)dv.

The order of the transition probability is dependent on
the order of the small quantity ¥;.,/L. We therefore
define Vj; to be zero order and V. to be first order.

10 7. M. Jackson and N. F. Mott, Proc. Roy. Soc. (London)
A137, 703 (1932).
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If we then put Eq. (10) into Eq. (8) and set the sum
of terms of each order equal to zero, we obtain

— (B/2) [(/dx®) +kE]f O+ V[ @ =0,
— (B2/2) [(d/dx®) + kA1 0+ Vil [0+ Vi 10 =0,
(15)

where 7 is again the initial state and j is any other state.

If we now regard Eq. (14) as a purely mathematical
entity, we define the solution for arbitrary subscript j
as F;(x), and choose that solution which goes to zero
as x——cw [since V' (x)— o], and which has the
asymptotic form

Fj(x)~ cos(kjx+n)

(14)

(16)

as x—- . Because of Eq. (6), and since a;" =1, we
must take

2F=f,0. (17)

We now solve Eq. (15) by making the substitution
1,0 =gl,, and multiplying through by F; to obtain

h? 198
W =0,
21Il[dt( T dx )]+2V SEE=

in which we have used Eq. (14) to simplify. If Eq. (18)
is integrated, using the fact that F;—0 as x¥—— 0, we
obtain

(18)

dg ( me ) i dm
Fp==——
dx \mp+mc/ L

For large x, the integral in Eq. (19) is a constant,
namely.

f FiV(x)Fdx. (19)

f F.V () Fyda,
and we obtain

me i 4m/
= -———’— FV(x)Fid
[(mu-’rmc L ® () ‘]

X [tan(kx+n)+ const.].

We must now choose the constant in Eq. (20) so that

lim (g)

z-»m®

(20)

fi¥=gF; has the same asymptotic form as Eq. (6). If
the constant is chosen as —i/kj, we obtain
. , mc Vijdm [
limf,®0=| — = F.V(x)Fjdx
:Tlf’ [ I("‘B"""’C) L k) (e ’(h]

X expli(ka+m) ], (21)
so that

. me 2 I/".JL’(_;""" )’.’ /+m ; . 2
P2 = —_— FV(x)Fidx |, (22
|l (m;;—{—mc) L \R%k; o (#) Fadz |, (22)
and
prse (e LY L
mp+mc h? —
(23)
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Here, F, and F;are once again the solutions of Eq. (14)
which have the asymptotic form Eq. (16) as x—, and
which go to zero as ¥— — . This result can be general-
ized to any unperturbed B-C wavefunctions ¥;®B€(})
and any potential of the form V7 (x, ¥)=V®(x)
V®BO(Y), in which VBO(¥)=1+/(Y), and f(V)K1.
The result can then be written

iy

+o 2
/ FiV® (z) Fidx

|j VB0 (V) f(V)¥; (BC)(Y)(]Y’ (4m) ! (24)

W) ki

III. CONNECTION WITH SEMICLASSICAL
TIME-DEPENDENT PERTURBATION THEORY

Zener'' was the first to upply this method to the
present problem. We consider a molecule B-C which
is initially in vibrational state ;% (V) with energy e;
and wish to compute the probability of finding it in
state W;BO (V) with energy ¢ if a time-dependent
perturbation is applied in the form of a molecular
collision. In the usual way [analogous to Eq. (4)], we
write the total wavefunction as

V= a,({)¥, B (V) exp(iwnt), (25)

where w,=¢,/fi. The use of this wavefunction in the
time-dependent wave equation

(Ho+ V)W =hi(a%/o1), (26)
where
Hgb,BO =¢, 1, BO (V) gives
dan/dt= (fu)-lZa,-(z) Vai exp(iwjt), (27)
3

where V,;/ (1) is the V,; of Eq. (9) and the classical
x(#) converts x to t. If we let a;(— ) =1, the prob-
ability of transition to State j is | a;( ) |.2 In analogy
to Egs. (9) and (10), we let a,~1 for all ¢, assuming
| a,|>> | a; |* for i¥5 and obtain

1 @ 2
P,..,'=f—2 / Vi (1) exp(iwit)dt | . (28)
The time-dependent perturbation result is
1)‘._‘1= ’/“’ V(l) e.\'p(iw,-jl)dt )
-] 2 1
x | [(waonneeemar| =, (29
0

in which V(#) is obtained by using the classical x(¢)
in V& (x).
The correspondence between this and Eq. (24) is
o 7 k k
/ PV (z) Fod= k) f V(1) cos(wit)dt  (30)

1. C, Zener, Proc. Cambridge Phil. Soc. 29, 136 (1932).
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in the classical limit. To show this correspondence, we
use the quasiclassical wavefunctions given in the
Appendix for x>a,, and neglect the classically for-
bidden region of x.** We then have

1
e (klkJ) !
e ’—Z{Ekg(.\:) k,~(.r)]}

X{COS[/;}"‘(‘AJ) (1.1"+j:ikj(n") (1.1"—1—;;]
-+ cos[/xk;(x') d‘\f'—/xkj(.\")d.\"]}. (31)

The first cosine term in Eq. (31) oscillates much more
rapidly than the second cosine term if | (ki—k;) | <
| (ki+E;) | (as is necessary for the use of the classical
trajectory). Since these cosines are to be multiplied by
the slowly varying function V®(x) and integrated,
the integral involving the rapidly oscillating cosine can
be neglected.
We then make the approximation

mdx/h[ki(x) k;(x) J=dt

(32)

in which an average velocity is used because k;=xkj,
and neglect the difference between a; and a; for the
same reason, to obtain

@ 7
FiV® (x) Fdv=—(kk;)}
2m

-0

) X
xfo I(_I){cos/o [k:(X') —k;(X') JX }(u, (33)

in which X=x—a.
But by conservation of energy,

Wiy
WX =Hi XY=y
T (X)) +i(X) ]
and since 7;”%v;, we obtain Eq. (30) with

Z/-" ax’
o 3[v:i(X")+v;(X")]

(34)

The assumption of Eq. (32) is not a critical one; it
does nothing more than require k;Xk;. The assumption
of Eq. (34) is more restrictive; it requires that the
velocity used in converting V@®)(x) to V() must be

12 The proof given was also worked out independently by R. A.
Allen and P. Feuer (private communication). It is interesting to
speculate whether one could use the WKB wavefunctions directly
in Eq. (23) to obtain a simple result which is intermediate in
range of validity between the wave-mechanical and semiclassical
results. This author has been unable to effect the integration of
the matrix element with these wavefunctions. However, Landau
[L. Landau and E. Lifshitz, Quantum Mechanics (Pergamon
Press, London, 1938), pp. 178-183] has arrived at a principle
[see also B. Widom, Discussions Faraday Soc. 33, 37 (1962)]
which allows one to evaluate the exponential part of the matrix
element. Landau’s procedure is roungy equivalent to the follow-
ing discussion given in this paper, although the details are some-
what nebulous to this author.
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considered as the arithmetic mean of »; and v;, the
velocities in the initial and final quantum states.
Zener" has called attention to this point previously.

IV. PURELY CLASSICAL LIMIT

In the preceding sections, it is shown that in the
classical limit for motion in coordinate x, the wave-
mechanical method becomes identical with the time-
dependent perturbation method (using the classical
collision trajectory to obtain the perturbation energy
as a function of time). The classical collision trajectory
is obtained for a collision of constant energy Ey= }#ivg
in a potential field V' (x), and it turns out that one
must equate vy to (v;412;) /2, the average of velocities
before and after transfer of a quantum of energy. In
each case the motion in y was quantized and no classical
approximations were used.

The first treatment of this problem in the classical
limit for both & and y was given by Landau and Teller,?
who only calculated the exponential dependence of the
energy transfer on collision velocity. This approach has
been extended to include the pre-exponential terms by
Rapp,! and by Parker.”® In this method, the classical
collision trajectory X () is used to obtain the transient
driving force on the oscillator

F(t)=—(3/0Y)[V(X, ¥) Ixe.
For the potential given in Eq. (11),

F(t)=—[mc/(mp+mc) J(L)V(1). (35)
A purely classical oscillator initially oscillating with
phase 6 and amplitude A, when acted upon by a tran-
sient driving force F(#) acquires the net motion"

t
lim Y (#) = A sin(wi+35) +—1— F(s) sin[w(t—s) Jds,
Md —o

t->o

(36)

in which the first term is the initial oscillation before
collision, and the second term is the change due to the
transient force. If F(s) is an even function, that part
of the integral involving

o
/ F(s) sinwsds
—®
is zero, and one has

1 ™
lim¥ (1) = [A conbil— / F(s) coswsds] st
MW —

t-»x

+ A siné coswl. (37)

Then defining | ¥'(#) |? as the square of the amplitude,

13 J. G. Parker, Phys. Fluids 2, 449 (1959).
W1, C. Slater and N. H. Frank, Mechanics (McGraw-Hill
Book Company, Inc., New York, 1947).
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we find
AEvih:"}#“’g[l I'(OO) 12 - | l-(()) l'-,:]

= f:[— cosd / F(s) coswsds

1
+— I / F(s) coswsds
pe®

] (38)

in which AE,;, is the vibrational energy transferred to
the oscillator. Since all possible values of the initial
phase & are equally probable between 0 and 2w, the
average energy transferred is

(A Evib >Av = 2_ (39)

/mF(s) coswsds -,

as has been shown previously by Rapp! for the case
A =0 Now the picture that one must adopt is that
this (AE.i, ) is transferred in every collision, and that
(AEyip )aKhv. In the semiclassical or wave-mechancal
methods, an entire quantum is transferred only now
and then with probability P;.;. Although these pictures
of the process are radically different, if one considers
the net energy transfer to the oscillator averaged over
many collisions, the two results become identical. By
considering the relationship between the classical and
semiclassical calculations described by Rapp,! one may
show the correspondence between the methods. Rapp'®
and especially Takayanagi'? have more clearly shown
this correspondence. Following Takayanagi,”” we see
that the semiclassical result Eq. (29) for the potential
in Eq. (11), takes the form

I'r i _,'2

P i=—
J h2

‘ / " F(s) coswsds |, (40)

and the net energy transferred to the oscillator is

o o
2 mc \?
mp-+mc

X[P%im—P2%a]. (41)

Rapp''® has shown that when =0, Eq. (41) is the
same as Eq. (39). Takayanagi” and Gilbey' have
shown that the same holds true for any value of 7. The
reason that a net energy is transferred to the oscillator
is that by supposition the collision velocity is high
enough that #*/2>>hv in order to use the classical
trajectory. Therefore the semiclassical and purely

(AEviv)se=hv / °F (s) coswsds

15T am indebted to K. Takayanagi for the clear enunciation of
this proof when A #0 in his recent review article on energy trans-
fer (not yet published).

8 D. Rapp, “Vibrational Energy Transfer in Quantum and
Classical Mechanics,” LMSC Rept. 6-90-61-14 (1961), Lockheed
Missiles & Space Company, Palo Alto, California.

17 K. Takayvanagi, “Vibrational and Rotational Transitions in
Molecular Collisions” (review paper to be published, Depart-
ment of Physics, Saitama University, Japan).

13D, M. (Jl")c\ Phys. Chem. Solids 2‘5 1453 (1962).
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classical methods give identical results as far as the
energy transferred is concerned.

V. DISCUSSION

The calculation of energy exchange to an oscillator
depends on two coordinates, the external coordinate X,
and the vibrational amplitude Y. The calculation can
be carried out completely wave mechanically, semi-
classically in which Coordinate X is treated classically,
or purely classically in which both coordinates are
classical. At high velocities, the net energy transferred
to the oscillator is identical for all three methods.

The procedure to follow for any potential V(X) is
as follows. In the wave-mechanical method, Eq. (14)
must be solved for the F; functions, and these must be
used to calculate the matrix element in Eq. (22). In
the semiclassical method, one must neglect vibrations
and calculate the unperturbed trajectory X (#) from

dX/dt={(2/m)[E—V(X) ]}L

One then puts the X (#) into V(X) to obtain V(¢) to
use in Eq. (28). In the purely classical method, one
uses the V' (#) in Egs. (35) and (39).

These procedures have been carried out for an ex-
ponential repulsive potential in the wave-mechanical
approach by Jackson and Mott,'® Schwarz and Herz-
feld,*® and Takayanagi'®; in the semiclassical approach
by Zener,"! Rapp,' and Takayanagi;'® and the purely
classical method by Rapp'! and Parker.”® The corre-
spondence between the results has been demonstrated
by Rapp'® and by Takayanagi.”?

The same procedures have also been carried out for
a Morse potential interaction, in the wave-mechanical
approach by Devonshire,® and Takayanagi,® in the
semiclassical approach by Cottrell and Ream,®
Takayanagi,® and by Zener," and in the purely classi-
cal approach by Turner and Rapp.* Inconsistencies
between these results have been eliminated by
Takayanagi' and by Allen and Feuer.®

In most applications, the semiclassical result is suffi-
ciently accurate. However, the limiting factor in the
entire calculation is the basic assumption that | ¥ | < L.
For high vibrational states this is no longer a reasonable
approximation, and one cannot use the unperturbed
classical trajectory neglecting vibrations (nor can one
use the distorted wave approach in the wave-mechani-
cal case) as a reasonable model. For very high collision

K. Takayanagi, Progr. Theoret. Phys. (Kyoto) 8, 111
(1952); K. Takayanagi and T. Kishimoto, #bid. 9, 578 (1953);
K. Takayanagi, J. Phys. Soc. Japan 14, 75 (1939).

2 A. F. Devonshire, Proc. Roy. Soc. (London A158, 269 (1937).

# K. Takayanagi and Y. Miamoto, Sci. Rept. Saitama Uni-
versity AIII, 101 (1959).

2 R. E. Turner and D. Rapp, J. Chem. Phys. 35, 1076 (1961).
The algebraic error contained in this paper is such that one should
not introduce the factor m*, but retain v*. Thus only the modi-
fications (i) and (iii) should be retained in that paper. Thus as
Eg>e, the E)rolnblhty calculated with a Morse potential goes
asymptotically to the probability with a simple ct[mncntml poten-
tial. The numerical changes in Table I are completely negligible.

B R. A. Allen and P. Feuer, J. Chem. Phys. 40, 2810 (1964).
(preceding paper).
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velocities where the transition probabilities can be
large even though | ¥ | <L, one cannot use the per-
turbation approximation.?
APPENDIX. WKB CLASSICAL LIMIT FOR THE
SOLUTIONS OF EQ. (14)

Equation (23) is a strictly wave-mechanical result.
The only limitation on this calculation is that the
vibrational amplitude of B-C must be small compared
to the range of intermolecular forces L and the transi-
tion probability must be small. Tt is interesting to con-
sider whether the semiclassical result can be obtained
directly from Eq. (23) by use of the WKB expressions
for the F;. In order to do this, we require the appro-

2 D. Rapp and T. E. Sharp, J. Chem. Phys. 38, 2641 (1963).
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priate expressions for the solutions of Eq. (14), which
are

’ kn } ® ’ -’_I i
Fu:{fk"(T)j] cos[/‘;‘k,.(.t. )dx 4] (x>a,),

kn : * b ’
F"z{[k,.(x)]} e.\p[/hk..(m )dx]

with @, the classical turnmg point, and k.=k.(»),

corresponding to State n in Eq. (4). Rapp'® has evalu-
ated these expressions for an exponential potential and
shown that they are just the asymptotic forms of the
true solution for large positive and negative x—a. These
expressions are used in Eq. (31) of the text.

(x<an) ’



